If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20z^2=4z
We move all terms to the left:
20z^2-(4z)=0
a = 20; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·20·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*20}=\frac{0}{40} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*20}=\frac{8}{40} =1/5 $
| -r^2-2+4r^2+6r^2-9+9r^2+6r+4r^2-6r=0 | | -7+3=-3x+7 | | -14y=-199 | | 2y-1/3=-1/3 | | -x+6=x+20 | | 6x-13=3x+18 | | 4x2−41x+45=0 | | 9x/6-12x=10 | | (7x/3)+3=9x/5 | | 5x-24=32 | | x^2+4x-496=0 | | 5x-10=5x+20, | | X+5-4x/3=17/5-5x/2 | | 3(8x-5)=5(3x-6)=-4 | | 2^x=(-1) | | (2x+6)/2–x=3 | | (2^x)=-1 | | 8x-7=5x-9 | | 12t−11=4t+5 | | Ex12=30.00 | | x+12+x+12+2=20 | | d+$5.60=20.00 | | 2x+17+8+2=x+2 | | 8x-9=11+11x | | (2x-3)=135=45 | | 0.20x=4 | | 3+3x+22=x+17 | | X+x+2+x+4+x+6+x+8/5=11 | | 5x-20/5=11 | | .7^x×3^x×2^x=1764 | | -12x/15=6 | | y2(8-2y)=−2 |